Ultrafast Ultrasound Imaging
نویسنده
چکیده
Ultrasound can be considered as a disruptive technology in the medical device arena (Christensen, 2003). A disruptive technology has the potential to break the rules of existing markets. Thanks to its real time capabilities, its non ionizing properties and its cost much lower than any other medical modality ultrasound has significantly impacted clinical segments within radiology, obstetrics, vascular or cardiology and created new markets of emergency medicine and intervention. It could, in the future, change the rules for screening (where whole breast ultrasound devices are entering the market of breast imaging), diagnosis (with the standardization of elastography techniques in the prostate) and surgery (with HIFU – High Intensity Focused Ultrasound –, histotripsy devices and therapy monitoring tools). In this context, innovations in the ultrasound field always have enormous potential. In the history of ultrasound, many innovations have been developed since its establishment as a medical imaging device in the 1960s, roughly one or two per decade (Szabo, 2004). The key innovation that launched the modality in the 1960s, is the real time imaging capability through mechanical scanning. Multichannel systems with electronic control of transducer arrays were developed in the 1970s. In the 1980s, flow analysis tools came to maturity through color flow imaging and quantitative Doppler modes (Pulse Wave Doppler PWD). In the 1990's significant improvements in image quality were made possible with the introduction of real time compounding techniques and harmonic imaging. Although many of these concepts were studied in research laboratories years before the commercial dates cited above, it is systematically the maturity of a new technology that trigger the introduction of the innovations on commercially available platforms: for example, real time imaging was triggered by microprocessors development, Doppler modes were prompted by digital signal processing chips with enough dynamics to detect, at the same time, very weak blood signal and strong tissue echoes. The introduction of low cost Analog to Digital (A/D) converters has led to fully digital systems, significantly increasing the quality of the information delivered. Harmonic imaging was triggered by large bandwidth transducers, allowing reception of the signal at twice the transmit frequency. In the first decade of the 21st century, technology moved towards extensive miniaturization leading to the introduction of high performances portable devices. Portable devices have created new markets for ultrasound the emergency market for example, underlying again the disruptive potential of the modality. Today portable devices are the primary sources of
منابع مشابه
3 D ultrafast ultrasound imaging in vivo
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, noninvasively and in real time. In this study, we present the first implementation of Ultrafast...
متن کاملMultiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even mo...
متن کاملMedical Physics International
As ultrasonic waves penetrate deep into tissues ultrasound imaging is able to image invisible things by “seeing through tissues” in real time. With the advent of ultrafast ultrasound imaging, the modality can reach thousands of frames per second, much faster than what the human eye can see. A completely new world is revealed as most important physiological processes in the human body occur in t...
متن کامل3D ultrafast ultrasound imaging in vivo.
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafas...
متن کاملCephalopagus conjoined twins presented with encephalocele: diagnostic role of ultrafast MR imaging.
Conjoined twinning is a rare abnormality and cephalopagus is a very rare form of conjoined twins. We report a case of cephalopagus conjoined twins with encephalocele and omphalocele which diagnosed by ultrasonography and ultrafast magnetic resonance (MR) imaging at 24 weeks of the gestation. Ultrafast MR imaging can provide image quality superior to two dimensional ultrasonography and should be...
متن کامل4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat.
We present herein 4D ultrafast ultrasound flow imaging, a novel ultrasound-based volumetric imaging technique for the quantitative mapping of blood flow. Complete volumetric blood flow distribution imaging was achieved through 2D tilted plane-wave insonification, 2D multi-angle cross-beam beamforming, and 3D vector Doppler velocity components estimation by least-squares fitting. 4D ultrafast ul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012